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Abstract

A trapezoidal Fourier p-element for the in-plane vibration analysis of two-dimensional elastic solids is
presented. Trigonometric functions are used as enriching functions instead of polynomials to avoid ill-
conditioning problems. The element matrices are analytically integrated in closed form. With the additional
Fourier degrees of freedom (d.o.f.s), the accuracy of the computed natural frequencies is greatly increased.
One element can predict many modes accurately. Since a triangle can be divided into three trapezoidal
elements, the range of application is much wider than the previously derived rectangular Fourier p-element.
Numerical examples show that convergence is very fast with respect to the number of trigonometric terms.
Comparison of natural modes calculated by the trapezoidal Fourier p-element and the conventional finite
elements is carried out. The results show that the trapezoidal Fourier p-element produces much higher
accurate modes than the conventional finite elements with the same number of d.o.f.s. For a benchmark
problem, the condition number of the mass matrix using Legendre p-element increases rapidly and it
becomes non-positive with 22 terms. The condition numbers of the Fourier p-element matrices are
consistently much lower than those of the Legendre p-element.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Many engineering vibration problems can be analyzed by plane stress or plane strain problems
for simplicity. Isoparametric quadrilateral elements with analytic integrals for stiffness matrix and
mass matrix [1–3] are widely used. Hybrid elements including assumed hybrid stress method [4–7]
and assumed hybrid strain method [8,9] were developed based on the isoparametric coordinates
and the internal incompatible displacements.

ARTICLE IN PRESS

*Corresponding author. Tel.: +852-2788-7600; fax: +852-2788-9643.

E-mail address: andrew.leung@cityu.edu.hk (A.Y.T. Leung).

0022-460X/03/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0022-460X(03)00263-3



The accuracy of solutions using the finite element method may be improved in two ways. The
first is the h-version to refine the finite element mesh and the second is the p-version to increase the
order of polynomial shape functions for a fixed mesh. In general, p convergence is more rapid per
degree of freedom (d.o.f.) [10]. Legendre polynomials were used as hierarchical shape functions to
form the Legendre p-element to analyze plane problems [11]. In a p-version finite element method,
the trigonometric functions are more effective in predicting the medium- and high-frequency
modes than polynomials both in precision and in avoiding the ill-conditioning problems [12,13].
The Fourier p-version elements are popular for the dynamic problems [14,15]. Rectangular
elements are good for the vibration analyses with regular shapes such as square, L- and H-shapes.
For irregular polygonal shapes, triangular elements are useful. However, the existing triangular
membrane Fourier p-element [14] cannot be integrated analytically introducing numerical
integration errors. The problem becomes obvious for higher Fourier terms that are oscillating.
One can always break a triangle into three trapezoids by drawing three lines parallel to the edges
from any point inside the triangle. So the trapezoidal Fourier p-element with analytic integration
can obtain very high vibration modes for the arbitrary polygons accurately. It is noted that the
total number of d.o.f. of a triangle consisting of three trapezoids is greater than that of a single
triangular element. Leung and Chan [16] gave the trigonometric shape functions for the axial
vibration analysis of a two-node bar. The trigonometric shape functions can be extended to that
for the trapezoidal Fourier p-element by co-ordinate transformation as shown in Fig. 1.
In order to examine the present element, some two-dimensional numerical examples are given.

In a benchmark test, the matrix condition number of the Legendre p-element increases rapidly and
the mass matrix becomes non-positive when 22 Legendre hierarchical terms were used. The matrix
condition number of the Fourier p-element is consistently lower than those of the Legendre
p-element and no failure was observed. The analytic trapezoidal Fourier p-element is indeed more
effective than both the conventional finite element and the orthogonal Legendre p-element in
predicting the medium- and high-frequency modes for the same number of degrees of freedom
(d.o.f.s).

2. Formulation

2.1. Shape functions

Leung et al. [16] adopted the Fourier-enriched shape functions fiðzÞ ¼ ½1� z; z; sinðppzÞ�
(p ¼ 1; 2;y) to analyze the axial vibration of a two-node bar. The sine functions represent
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Fig. 1. The trapezoidal element co-ordinate transformation.
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internal d.o.f.s. The shape functions can be easily extended to that for analyzing two-dimensional
problems:

Niðx; ZÞ ¼
Xpþ2
k¼1

Xqþ2
l¼1

fkðxÞflðZÞ; i ¼ 1; 2;yðp þ 2Þðq þ 2Þ: ð1Þ

The four shape functions without enriching sine functions are commonly used in the Q4 element
[17]. The trigonometric shape functions lead to zero displacement at each node. The shape
functions with one sine series enrich the flexibility along the edges and the shape functions using
double sine series give additional freedom to the interior of the element.

2.2. Stiffness matrix and mass matrix

The co-ordinate systems used to define a trapezoidal plane element are shown in Fig. 1. It is
mapped into a square region in the x� Z plane, and the Cartesian co-ordinates x and y can be
defined by

x ¼ ½ð1� xÞð1� ZÞ; xð1� ZÞ; xZ; ð1� xÞZ� � ½x1;x2; x3;x4�T; ð2aÞ

y ¼ ½ð1� xÞð1� ZÞ; xð1� ZÞ; xZ; ð1� xÞZ� � ½y1; y2; y3; y4�T; ð2bÞ

where xi and yi are the values of Cartesian co-ordinates at the four corner nodes, respectively. The
Jacobian matrix is defined in terms of the Cartesian co-ordinates at the four corner nodes:

J ¼

@x

@x
@y

@x
@x

@Z
@y

@Z

2
664

3
775 ¼

a þ eZ 0

b þ ex c

" #
; ð3Þ

where e ¼ d � b � a: Then the determinant of Jacobian is jJ j ¼ cða þ eZÞ; and

J�1 ¼

1

jJ j
0

�
b þ ex

cjJ j
1

c

2
664

3
775 ¼

%J11 %J12

%J21 %J22

" #
: ð4Þ

The displacement functions can be expressed as

u

v

( )
¼

N1 0 N2 0 Ni 0 ?

0 N1 0 N2 0 Ni ?

" #
de; i ¼ 3Bðp þ 2Þðq þ 2Þ; ð5Þ
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where de is the vector of nodal displacement. Substituting Eq. (5) into the strain equations gives

e ¼

@u

@x
@v

@y

@u

@y
þ

@v

@x

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

%J11 %J12 0 0

0 0 %J21 %J22

%J21 %J22 %J11 %J12

2
64

3
75

@u

@x
@u

@Z
@v

@x
@v

@Z

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼ B � de: ð6Þ

For the harmonic vibration of the plane problems, the stiffness matrix and the mass matrix of the
element are obtained by applying the principle of minimum potential energy and the Hamilton’s
principle, respectively,

Ke ¼
Z

V

BTDB dV ¼ t �
Z 1

0

Z 1

0

BTDB � jJ j dx dZ; ð7Þ

Me ¼
Z

V

rNTN dV ¼ rt �
Z 1

0

Z 1

0

NTN � jJ j dx dZ: ð8Þ

For a plane stress problem, the rigidity matrix is

D ¼ D0 �

1 n 0

n 1 0

0 0 ð1� nÞ=2

2
64

3
75; ð9Þ

where D0 ¼ E= 1� n2
� �

with E is the Young’s modulus, r is the density, t is the thickness of the
element and n is the Possion’s ratio. For the plane strain problem, E and n are substituted by
E=ð1� n2Þ and n=ð1� nÞ respectively. Since the determinant of Jacobian jJ j is only related to Z; x
and Z can be integrated independently, so the coefficients of the stiffness matrix and the mass
matrix can be given by:

if m ¼ 2ðj þ ði � 1Þðq þ 2ÞÞ � 1 and n ¼ 2ðl þ ðk � 1Þðq þ 2ÞÞ � 1;

Km;n ¼D0t A0;0ð1Þj;l � c � B1;1ð1Þi;k þ
1

2c
ð1� nÞ � B1;1ð3Þi;k

� ��
þ A0;1ð2Þj;l � �

1

2c
ð1� nÞ � B1;0ð2Þi;k

� �

þ A1;0ð2Þj;l � �
1

2c
ð1� nÞ � B0;1ð2Þi;k

� �
þA1;1ð3Þj;l �

1

2c
ð1� nÞ � B0;0ð1Þi;k

� ��
; ð10aÞ

else if m ¼ 2ðj þ ði � 1Þðq þ 2ÞÞ � 1 and n ¼ 2ðl þ ðk � 1Þðq þ 2ÞÞ;

Km;n ¼ D0t A0;0ð1Þj;l � �
1

2
ð1þ nÞ � B1;1ð2Þi;k

� ��
þ A0;1ð2Þj;l � ½v � B1;0ð1Þi;k�þA1;0ð2Þj;l �

1

2
ð1� nÞ � B0;1ð1Þi;k

� ��
; ð10bÞ
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else if m ¼ 2ðj þ ði � 1Þðq þ 2ÞÞ and n ¼ 2ðl þ ðk � 1Þðq þ 2ÞÞ � 1;

Km;n ¼ D0t A0;0ð1Þj;l � �
1

2
ð1þ nÞ � B1;1ð2Þi;k

� ��
þ A1;0ð2Þj;l � ½v � B0;1ð1Þi;k�þA0;1ð2Þj;l �

1

2
ð1� nÞ � B1;0ð1Þi;k

� ��
; ð10cÞ

else if m ¼ 2ðj þ ði � 1Þðq þ 2ÞÞ and n ¼ 2ðl þ ðk � 1Þðq þ 2ÞÞ;

Km;n ¼D0t A0;0ð1Þj;l �
1

c
� B1;1ð3Þi;k þ

c

2
ð1� nÞ � B1;1ð1Þi;k

� ��
þ A0;1ð2Þj;l � �

1

c
� B1;0ð2Þi;k

� �

þ A1;0ð2Þj;l � �
1

c
� B0;1ð2Þi;k

� �
þA1;1ð3Þj;l �

1

c
� B0;0ð1Þi;k

� ��
; ð10dÞ

else if m ¼ 2ðj þ ði � 1Þðq þ 2ÞÞ � 1 and n ¼ 2ðl þ ðk � 1Þðq þ 2ÞÞ � 1; or, m ¼ 2ðj þ ði � 1Þðq þ 2ÞÞ
and n ¼ 2ðl þ ðk � 1Þðq þ 2ÞÞ; that is to say, m and n are both even or odd,

Mm;n ¼ rtA0;0ð2Þi;kB0;0ð1Þj;l; ð11aÞ

else then

Mm;n ¼ 0: ð11bÞ

The integrals are

A
a;b
ðmÞi;k ¼

Z 1

0

1

ða þ eZÞ2�m � f a
i f

b
k dZ; ð12aÞ

B
a;b
ð1Þi;k ¼

Z 1

0

f a
i f

b
k dx; ð12bÞ

B
a;b
ð2Þi;k ¼

Z 1

0

ðb þ exÞf a
i f

b
k dx; ð12cÞ

B
a;b
ð3Þi;k ¼

Z 1

0

ðb þ exÞ2f a
i f

b
k dx; ð12dÞ

where i; k ¼ 1; 2;y; p þ 2; j; l ¼ 1; 2;y; q þ 2; m ¼ 1B3 and the superscripts a and b (a;b ¼ 0; 1)
denote the order of the derivatives.
For the rectangular element, e ¼ 0 and b ¼ 0: For the skew element, e ¼ 0: There is no problem

in the integrals of their coefficients of mass and stiffness matrices. For the trapezoidal plane
element, the problem reduces to the integration of Zk=ða þ eZÞ and expðikpZÞ=ða þ eZÞ: The former
does not require much attention and the latter is equal to ð1=eÞ expð�ikbpÞ � ðEið�ikbpÞ�
Eið � ikð1þ bÞpÞÞ where b ¼ a=e and Ei is the exponential integral function. The exact values of
the above integrals will be easily obtained if some commercial packages such as Matlab and
Maple are used.

2.3. Free vibration analysis of structures

With the above analytical integrals, the stiffness matrix and the mass matrix of the element with
order R ¼ ðp þ 2Þðq þ 2Þ are rather straightforward. The stiffness matrix and the mass matrix
obtained by Eqs. (10) and (11), respectively can be stored in two individual files. These files are
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later used to compute the natural frequencies of the plane problems. If the integrals were
evaluated numerically using Gaussian quadrature such as those of the triangular Fourier
p-element [14], the shape functions of the element do not satisfy the requirement of completeness
and numerical errors increase with the order, which is the number of Fourier terms, due to
increasingly high oscillation. The Gaussian quadrature can only be used to predict several lowest
frequencies with few Fourier terms. Alternatively, a triangular element can be divided into three
trapezoidal elements by drawing three lines parallel to the edges from any point inside the triangle.
With the analytical integral formulae (12), the stiffness matrix and mass matrix for a triangular
Fourier p-element of any order can also be formulated for non-uniform thickness.
Before assembling the elements, the internal d.o.f.s and the d.o.f.s on some edges and at corner

nodes not adjacent to other elements can be condensed by exact dynamic condensation [18]. The
assembling is carried out by ensuring that the directions of the common edges are compactable
between two adjacent elements. Then, for free vibrations one has,

K � u� l �M � u ¼ 0; ð13Þ

where K is the global stiffness matrix of the structure,M is the global mass matrix of the structure,
u is the eigenvector in terms of the master d.o.f.s of the structure, and l ¼ o2 is the eigenvalue
where o is the natural frequency of the structure.

3. Numerical examples

To simplify the computation, the trigonometric term p is given the same value as q in this paper.
The following several cases of in-plane vibration are used to examine the performance of the new
trapezoidal Fourier p-element.

3.1. Longitudinal vibration of an elastic bar

The analytical solution for the vibration modes of general two-dimensional elastic solid
problems is not available. Consider the longitudinal vibration of an elastic bar as shown in Fig. 2.
It is a one-dimensional plane stress problem. It is well known that the analytic natural frequencies
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[19] of an elastic bar with one end fixed are

oi ¼
ð2i � 1Þp
2L

ffiffiffiffi
E

r

s
ði ¼ 1; 2; 3;yÞ; ð14Þ

where L is the length of the bar, E and r are the elastic modulus and mass per unit length of the
bar. For simplicity, one takes E ¼ 1; r ¼ 1 and Poisson’s ratio v ¼ 0: As shown in Fig. 2, the bar
is divided into two trapezoidal element and four trapezoidal elements respectively. With increasing
number of trigonometric terms p; the computed eight lowest modes are shown in Table 1 along
with the analytic solutions. It is found that very fast convergence is possible with increasing
number of trigonometric terms, and the present solutions with coarse mesh show high accuracy.

3.2. Free vibration of cantilever plates

The in-plane free vibration of a cantilever plate is a truly two-dimensional problem. A square
cantilever plate with in-plane vibration was studied by Gupta [20] involving higher order dynamic
correction terms in the associated stiffness and mass matrices and provided solutions with a
20
 20 mesh of plane stress finite elements. Zhao et al. [21] gave the asymptotic solutions using
four square plane stress elements. The parameters are: E ¼ 1; r ¼ 1 and v ¼ 0:3: The results
computed by two trapezoidal Fourier p-elements (see Fig. 3) are compared with the solutions in
Refs [20,21] together with the ones computed by Q4 elements with a fine mesh of 100
 100 in
Table 2. It is noted that the Gupta’s solutions were computed by finite dynamic elements and they
are smaller than those of Q4 elements with fine mesh. It can be found that the computed results of
the present method with p ¼ q ¼ 6 are in excellent agreement with those of Q4 elements.
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Table 1

Values of natural frequencies for the longitudinal vibration of an elastic bar

Method Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

Present 2
 1 p ¼ q ¼ 1 0.1573 0.4856 0.9344 1.7539 2.4492 2.5102 2.6575 3.0484

p ¼ q ¼ 2 0.1572 0.4725 0.7955 1.7415 2.2382 2.2836 2.3757 2.7583

p ¼ q ¼ 3 0.1571 0.4722 0.7894 1.1079 1.4483 1.9026 2.2368 2.6649

p ¼ q ¼ 4 0.1571 0.4715 0.7869 1.1056 1.4257 1.7490 2.1129 2.4840

p ¼ q ¼ 5 0.1571 0.4714 0.7864 1.1018 1.4196 1.7418 2.0636 2.3970

p ¼ q ¼ 6 0.1571 0.4714 0.7856 1.1005 1.4158 1.7307 2.0472 2.3570

p ¼ q ¼ 7 0.1571 0.4713 0.7855 1.0999 1.4147 1.7304 2.0464 2.3570

Present 4
 1 p ¼ q ¼ 1 0.1571 0.4724 0.7952 1.1367 1.5706 2.0310 2.449 2.7291

p ¼ q ¼ 2 0.1571 0.4716 0.7866 1.1022 1.4207 1.7497 2.1036 2.4759

p ¼ q ¼ 3 0.1571 0.4715 0.7861 1.1018 1.4185 1.7353 2.0516 2.3703

p ¼ q ¼ 4 0.1571 0.4713 0.7856 1.1001 1.4150 1.7310 2.0485 2.3670

p ¼ q ¼ 5 0.1571 0.4713 0.7856 1.1001 1.4148 1.7297 2.0446 2.3597

p ¼ q ¼ 6 0.1571 0.4713 0.7855 1.0998 1.4142 1.7289 2.0438 2.3572

p ¼ q ¼ 7 0.1571 0.4713 0.7855 1.0998 1.4141 1.7286 2.0431 2.3568

Analytic solutions 0.1571 0.4712 0.7854 1.0996 1.4137 1.7279 2.0420 2.3562
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The condition number CN defined in Ref. [22] is used to measure the ill-conditioning in a
coefficient matrix.

CN ¼
lmax

lmin

; ð15Þ

where lmax and lmin are respectively the largest and smallest eigenvalues of the coefficient matrix.
A large condition number indicates that the FEM solutions may be ill-conditioned. To study the
conditioning of the Legendre p-element (or the hierarchical finite element using Legendre
polynomials, HFEM) with increasing orders, the mass matrices of the square cantilever plate (see
Fig. 3) using a single square mesh are computed by the Fourier p-element and HFEM whose
shape functions are the same as the ones in Ref. [12]. Using the commercial package Matlab, the
condition numbers of the mass matrices computed by the two methods are compared in Fig. 4. It
is evident that the CN of the Fourier p-element is much smaller than that of HFEM. For
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Table 2

Comparison of the natural frequencies for a square cantilever plate

Method Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Present 2
 1 p ¼ q ¼ 1 0.0684 0.1587 0.1840 0.3095 0.3390 0.3671

p ¼ q ¼ 2 0.0667 0.1583 0.1791 0.2881 0.3099 0.3259

p ¼ q ¼ 3 0.0663 0.1582 0.1785 0.2830 0.3064 0.3244

p ¼ q ¼ 4 0.0661 0.1581 0.1778 0.2826 0.3052 0.3230

p ¼ q ¼ 5 0.0660 0.1581 0.1777 0.2820 0.3047 0.3228

p ¼ q ¼ 6 0.0660 0.1580 0.1775 0.2819 0.3044 0.3225

Zhao et al. [21] Uncorrected 0.0719 0.1637 0.2090 0.3372 0.3905 0.3964

Corrected 0.0709 0.1538 0.1899 0.2755 0.3051 0.3082

Gupta [20] 20
 20 0.0659 0.1580 0.1769 0.2797 0.3034 0.3214

Q4 100
 100 0.0658 0.1580 0.1772 0.2816 0.3037 0.3223

6 4

4 6

10

(a) trapezoidal 2×1 mesh (b) rectangular 2×2 mesh

Fig. 3. Finite element model of a square cantilever plate.
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p ¼ q ¼ 22; lmin and the condition number of the mass matrix computed by HFEM are negative.
The mass matrices of HFEM are no longer numerically positive definitive and HFEM fails to
predict the natural frequencies of the plate for p ¼ qX22: The mass matrices consist of the
integrals A0;0ð2Þi;k and B0;0ð1Þj;l which are also involved in the coefficients of the stiffness matrices.
Therefore, the stiffness matrices computed by HFEM are also ill-conditioned. On the other hand,
the Fourier p-element behaves well for very large orders.
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The natural frequencies of the plate with a single square element computed by the Fourier
p-element and HFEM with p ¼ q ¼ 5 respectively are compared in Fig. 5 along with the solutions
of Q4 elements with 100
 100 mesh. The Fourier p-element using trigonometric shape functions is
indeed more effective in predicting the medium- and high-frequency modes than the element using
orthogonal Legendre polynomials as the shape functions.
With the same 2ð2þ 3p þ p2Þ d.o.f.s, a trapezoidal plate with E ¼ 1; r ¼ 1 and v ¼ 0:3 is taken

as a trapezoidal Fourier p-element and descretized into ðp þ 1Þ2 Q4 elements respectively as shown
in Fig. 6. The comparison of the natural frequencies computed is carried out in Table 3 along with
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20
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10

(a) trapezoidal 1×1 mesh (b) Q4  3×3 mesh

Fig. 6. Finite element model of a trapezoid cantilever plate.

Table 3

Comparison of the natural frequencies for a trapezoidal plate between the trapezoidal Fourier p-element and the four

nodes isoparametric elements with the number of d.o.f.s in parentheses

Method (d.o.f.s) Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

p ¼ q ¼ 1(12) 0.0387 0.0879 0.1113 0.2211 0.2463 0.2808 0.3052 0.3421

Q4 2
 2(12) 0.0406 0.0897 0.1277 0.2248 0.2567 0.2948 0.3090 0.3497

p ¼ q ¼ 2(24) 0.0377 0.0865 0.1003 0.1852 0.2129 0.2215 0.2483 0.2732

Q4 3
 3(24) 0.0390 0.0880 0.1137 0.2055 0.2364 0.2472 0.2707 0.2957

p ¼ q ¼ 3(40) 0.0375 0.0864 0.0988 0.1779 0.2034 0.2142 0.2365 0.2588

Q4 4
 4(40) 0.0380 0.0870 0.1040 0.1905 0.2173 0.2239 0.2505 0.2736

p ¼ q ¼ 4(60) 0.0374 0.0863 0.0983 0.1767 0.2012 0.2123 0.2327 0.2554

Q4 5
 5(60) 0.0380 0.0870 0.1040 0.1905 0.2173 0.2239 0.2505 0.2736

p ¼ q ¼ 5(84) 0.0374 0.0863 0.0981 0.1762 0.2006 0.2118 0.2319 0.2544

Q4 6
 6(84) 0.0378 0.0867 0.1022 0.1868 0.2120 0.2204 0.2456 0.2686

Q4 100
 100 0.0373 0.0862 0.0977 0.1755 0.1998 0.2112 0.2304 0.2531
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those of Q4 elements with a 100
 100 mesh. It is found that the solutions using trapezoidal
Fourier p-elements are more accurate than those of the Q4 elements per number of d.o.f.s. The
accuracy of the solutions computed by the linear Q4 finite elements with 84 d.o.f.s (6
 6) is
achieved by the trapezoidal Fourier p-element method using only 24 d.o.f.s (p ¼ q ¼ 2).
A cantilever shear wall is shown in Fig. 7. Petyt [23] analyzed its first five natural frequencies

using different kinds of elements and meshes as shown in Fig. 7. And then, Cheung et al. [24]
applied a refined non-conforming quadrilateral element RQ6 to compute its first three natural
frequencies for the flexural modes. The parameters of the shear wall are E ¼ 3:4474
 1010 N/m2,
r ¼ 568:7 kg/m3 and n ¼ 0:11: The natural frequencies of the present element are computed and
compared with those of the other elements in Table 4. The analytical solutions are obtained by
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Fig. 7. Meshes of a cantilever shear wall.

Table 4

Comparison of the natural frequencies for a cantilever shear wall

Method Mode 1 Mode 2 Mode 3a Mode 4 Mode 5a

Analytic solution 31.247 165.820 200.710 389.972 602.130

Linear triangular 40.162 202.363 201.125 470.252 608.841

Linear rectangular 32.987 175.873 201.163 424.228 611.040

Rectangular 8-node 31.328 165.417 200.836 393.629 602.903

RQ6 31.278 164.513 — 386.994 —

Present p ¼ q ¼ 1 33.665 200.856 202.163 517.813 624.634

p ¼ q ¼ 2 31.940 167.888 200.836 403.067 603.178

p ¼ q ¼ 3 31.358 164.575 200.747 381.013 602.824

p ¼ q ¼ 4 31.270 162.309 200.730 377.590 602.047

p ¼ q ¼ 5 31.182 161.812 200.716 375.388 601.993

aModes of longitudinal vibration.
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treating the wall as a deep beam [25]. The computed results show that the Fourier p-element can
obtain the very accurate results with a simple mesh and a few trigonometric terms.

3.3. Free vibration of an earth dam

The final example is the vibration analysis of an earth dam of triangular cross-section with
E ¼ 5:602
 108 N/m2, r ¼ 2080 kg/m3 and v ¼ 0:45: This plane strain problem is derived from
the plane stress problem by replacing E by E=ð1� n2Þ and n by v=ð1� vÞ: The cross-section is a
triangle that can be divided into three trapezoidal Fourier p-elements as shown in Fig. 8. Clough
et al. [26] analyzed this problem with 100 CST elements and 110 d.o.f.s, and then Cheung et al.
[24] used 35 refined non-conforming elements with 72 d.o.f.s to obtain its first four frequencies.
Their calculating results along with those of the present trapezoidal Fourier p-element are shown
in Table 5. It is noted that there is little difference in the results and the maximum number of
d.o.f.s is 25 in the Fourier p-element solutions, cf. 110 in Ref. [26] and 72 in Ref. [24].

4. Conclusions

A trapezoidal Fourier p-element for the vibration analysis of two-dimensional elastic solids is
presented. With the analytic integration formulae, the analysis using this element is more accurate
than that by using similar elements involving Gaussian quadrature. For in-plane vibration
problems with shapes that must be analyzed by triangular elements, the present trapezoidal
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Fig. 8. Trapezoidal mesh division of an earth dam with triangular cross-section.

Table 5

Comparison of the natural frequencies for an earth dam

Mode CST [22] RQ6 [21] Present

p ¼ q ¼ 1 p ¼ q ¼ 2 p ¼ q ¼ 3 p ¼ q ¼ 4 p ¼ q ¼ 5

1 7.71 7.79 7.79 7.78 7.77 7.76 7.76

2 12.52 12.52 14.88 12.94 12.63 12.54 12.51

3 14.60 14.49 17.73 16.47 14.97 14.59 14.51

4 19.31 18.36 22.90 20.76 18.74 18.49 18.42
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Fourier p-element is a better choice to obtain solutions with high accuracy. The present element is
indeed more effective in predicting the medium- and high-frequency modes than the element using
orthogonal Legendre polynomials as shape functions both in precision and in avoiding the ill-
conditioning problems.
The eight lowest modes of an elastic bar with longitudinal vibration were analyzed

with different number of Fourier terms. The computed results were in good agreement with
the analytic solutions using seven Fourier terms. For the in-plane vibrations of cantilever
plates, comparison with the results computed by the trapezoidal Fourier p-elements and the
traditional finite elements respectively was carried out to examine the effectiveness. The results
showed that the trapezoidal Fourier p-element was more accurate in predicting the natural modes
than the traditional finite elements per d.o.f. A triangular element could be easily divided into
three trapezoidal elements by drawing three lines parallel to the edges from any point inside the
triangle. In this way, an earth dam with triangular cross-section was analyzed by the present
trapezoidal Fourier p-elements and the results were compared with those of previously derived
elements.
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Appendix A. Nomenclature

a value of x co-ordinate at the second corner node
b value of x co-ordinate at the fourth corner node
c value of y co-ordinate at the third and fourth corner nodes
d value of x co-ordinate at the third corner node
e =d � b � a

Ni element shape functions
J Jacobian matrix
jJ j determinant of Jacobian
E Young’s modulus
r mass per unit area
n Poisson’s ratio
t uniform thickness of the element
D0 flexural rigidity (=E=ð1� n2))
x; y Cartesian co-ordinates
x; Z co-ordinates in mapped plane
xi; yi values of x and y co-ordinates at the four corner nodes
Ke;Me stiffness matrix and mass matrix of the element
Km;Mn coefficients of the stiffness matrix and mass matrix
K;M stiffness matrix and mass matrix of the structure
p; q numbers of trigonometric terms
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R order of element stiffness and mass matrices
u eigenvector of the structure
l eigenvalues of the structure
o natural frequencies
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